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Slide Conventions 

• Verbatim command-line interaction: 
“$” precedes explicit typed input from the user. 
“↲” represents hitting “enter” or “return” after input to execute it. 
“…” denotes text output from execution was omitted for brevity. 
“#” precedes comments, which only provide extra information. 

$ ssh hpc_user@eagle.nrel.gov↲ 
… 

Password+OTPToken: # Your input will be invisible 

• Command-line executables in prose: 
“The command scontrol is very useful.” 
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Eagle Login Nodes 

Login DAV 

eagle.hpc.nrel.gov eagle-dav.hpc.nrel.gov 

Internal External (Requires OTP Token) 
Login DAV 

eagle.nrel.gov eagle-dav.nrel.gov 

Direct Hostnames 
Login 

el1.hpc.nrel.gov 
el2.hpc.nrel.gov 
el3.hpc.nrel.gov 

DAV 
ed1.hpc.nrel.gov 
ed2.hpc.nrel.gov 
ed3.hpc.nrel.gov 

NREL | 4 

http:eagle-dav.nrel.gov
http:eagle.nrel.gov


        

 
   

   
 
   

Sections 

1 
2 
3 
4 
5 

Slurm Overview 
Eagle Partitions by Feature 
Job Dependencies and Job Arrays 
Job Steps 
Job Monitoring and Troubleshooting 

https://www.nrel.gov/hpc/eagle-user-basics.html 
NREL | 5 

https://www.nrel.gov/hpc/eagle-user-basics.html


NREL    |    6



        

  

    

        
    

    

       

  

What is Slurm 

• Slurm – Simple Linux Utility for Resource Management 

• Development started in 2002 at Lawrence Livermore as a 
resource manager for Linux clusters 

• Over 500,000 lines of C code today 
• Used on many of the world's largest computers 

• Active global user community 

https://slurm.schedmd.com/overview.html 
NREL | 7 

https://slurm.schedmd.com/overview.html


        

 

    

     

 
  

 
 

Why Slurm? 

Open source (GPLv2, on Github) FAST! 

Centralized configuration 
System administrator friendly 

SchedMD Highly 
Commercial Configurable 
Support 

Scalable Fault-tolerant (no single point of failure) 
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Slurm Basics - Submission 

• sbatch – Submit script to scheduler for execution 
– Script can contain some/all job options 
– Batch jobs can submit subsequent batch jobs 

• srun - Create a job allocation (if needed) and launch a job step
(typically an MPI job) 
– If invoked from within a job allocation, srun launches application 

on compute nodes (job step), otherwise it will create a job 
allocation 

– Thousands of job steps can be run serially or in parallel within a
job 

– srun can use a subset of the jobs resources 
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Slurm Basics -Submission 

• salloc – Create a job allocation and start shell (interactive) 
– We have identified a bug with our configuration. Your mileage may vary 

using salloc. Our recommended method for interactive jobs is: 

• sattach – Connect stdin/out/err for an existing job step 

Note: The job allocation commands (salloc, sbatch, and srun) accept almost 
identical options. There are a handful of options that only apply to a 
subset of these commands (e.g. batch job requeue and job array 
options) 
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$ srun –A <account> -t <time> [...] --pty $SHELL↲ 
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Basic sbatch Example Script 

$ cat myscript.sbatch 
#!/bin/bash 
#SBATCH --account=<allocation> 
#SBATCH --time=4:00:00 
#SBATCH --job-name=job 
#SBATCH --nodes=1 
#SBATCH --ntasks-per-node=8 
#SBATCH --mail-user your.email@nrel.gov 
#SBATCH --mail-type BEGIN,END,FAIL 
#SBATCH --output=job_output_filename.%j.out # %j will be replaced with the job 
ID 

srun ./myjob.sh 

$ sbatch myscript.sbatch 



        

 

      

       

       
          

 

Basic srun Examples 

• In our Slurm configuration, srun is preferred over 
mpirun 

• By default, srun uses all resources of the job allocation 
# From an interactive job: 
$ srun --cpu-bind=cores my_program.sh 

• You can also use srun to submit a job allocation 
• To obtain an interactive job, you must specify a shell 
application as a pseudo-teletype 

$ srun -t30 -N5 -A <handle> --pty $SHELL↲ 
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Simple Linux Utility for Resource Management 

• We will host more workshops dedicated to Slurm usage. Please 
watch for announcements, as well as our training page: 
https://www.nrel.gov/hpc/training.html 

• We have drafted extensive and concise documentation 
about effective Slurm usage on Eagle: 
https://www.nrel.gov/hpc/eagle-running-jobs.html 

• See all NREL HPC Workshop content on NREL Github: 
https://www.github.com/NREL/HPC 

NREL | 13 

https://www.nrel.gov/hpc/training.html
https://www.nrel.gov/hpc/eagle-running-jobs.html
https://www.github.com/NREL/HPC


        

 
   

   
 
   

Sections 

1 
2 
3 
4 
5 

Slurm Overview 
Eagle Partitions by Feature 
Job Dependencies and Job Arrays 
Job Steps 
Job Monitoring and Troubleshooting 

https://www.nrel.gov/hpc/eagle-job-partitions-scheduling.html 
NREL | 14 

https://www.nrel.gov/hpc/eagle-job-partitions-scheduling.html


        

  

     

        

   

   

      

   

    

      

  

Eagle Hardware Capabilities 

• Eagle comes with additional available hardware 

– All nodes have local disk space (1TB SATA ) except: 
• 78 nodes have 1.6TB SSD 

• 20 nodes have 25.6TB SSD (bigscratch) 

– The standard nodes (1728) have 96GB RAM 

• 288 nodes have 192GB RAM 

• 78 nodes have 768GB RAM (bigmem) 

– 50 bigmem nodes include Dual NVIDIA Tesla V100 PCIe 

16GB Computational Accelerators 
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Eagle Partitions 
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$ sinfo -o "%10P %.5a %.13l %.16F" 
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) 
short up 4:00:00 2070/4/13/2087 
standard up 2-00:00:00  2070/4/13/2087 
long up 10-00:00:00  2070/4/13/2087 
bigmem up 2-00:00:00  74/0/4/78 
gpu up 2-00:00:00  32/10/0/42 
bigscratch up 2-00:00:00  10/10/0/20 
debug up 1-00:00:00  0/13/0/13 

There are a number of ways to see the Eagle partitions. You can use 
scontrol to see detailed information about partitions 

$ scontrol show partition 

You can also customize the output of sinfo: 



        

          
    

            
           

     

Job Submission Recommendations 

To access specific hardware, we strongly encourage requesting by feature 
instead of specifying the corresponding partition: 

# Request 4 “bigmem” nodes for 30 minutes interactively 
$ srun -t30 -N4 -A <handle> --mem=200000 --pty $SHELL↲ 

# Request 8 “GPU” nodes for 1 day interactively 
$ srun -t1-00 -N8 -A <handle> --gres=gpu:2 --pty $SHELL↲ 

Slurm will pick the optimal partition (known as a “queue” on Peregrine) based your job’s 
characteristics. In opposition to standard Peregrine practice, we suggest that users avoid 
specifying partitions on their jobs with -p or --partition. 

https://www.nrel.gov/hpc/eagle-job-partitions-scheduling.html 
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Resources available and how to request 

Resource # of Nodes Request 

GPU 
44 nodes total 

22 nodes per user 
2 GPUs per node 

--gres=gpu:1 
--gres=gpu:2 

Big Memory 
78 nodes total 

40 nodes per user 
770 GB max per node 

--mem=190000 
--mem=500GB 

Big Scratch 
20 nodes total 

10 nodes per user 
24 TB max per node 

--tmp=20000000 
--tmp=20TB 
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Job Submission Recommendations cont. 

For debugging purposes, there is a “debug” partition. Use it if
you need to quickly test if your job will run on a compute node
with -p debug or --partition=debug 

$ srun -t30 -A handle -p debug --pty $SHELL↲ 

There is now a dedicated GPU partition following the
convention above. Use -p gpu or --partition-gpu 

There are limits to the number of nodes in these partitions.
You may use shownodes to quickly view usage. 
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Node Availability 

NREL | 20 

To check the availability of what hardware features are in use, 
run shownodes. Similarly, you can run sinfo for more nuanced 
output. 

$ shownodes↲ 
partition # free USED reserved completing offline down 
------------- - ---- ---- -------- ---------- ------- ----
bigmem m 0 46 0 0 0 0 
debug d 10 1 0 0 0 0 
gpu g 0 44 0 0 0 0 
standard s 4 1967 7 4 10 17 
------------- - ---- ---- -------- ---------- ------- ----

TOTALs 14 2058 7 4 10 17 
%s 0.7 97.5 0.3 0.2 0.5 0.8 



        

 

         
    

          
 

Eagle Walltime 

A maximumwalltime is required on all Eagle job submissions. Job 
allocations will be rejected if not specified: 

$ srun -A handle --pty $SHELL↲ 
error: Job submit/allocate failed: Time limit specification 
required, but not provided 

A minimum walltime may allow your job to start sooner using the 
backfill scheduler. 

# 100 nodes for 2 days with a MINIMUM time of 36 hours 
$ srun –t2-00 –N100 -A handle --time-min=36:00:00 --pty $SHELL↲ 
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   Building pipelines using Job Dependencies 



        

          
    

         
      

      
         

         
    

Job Dependencies 

• Job dependencies are used to defer the start of a job 
until the specified dependencies have been satisfied. 

• Many jobs can share the same dependency and these 
jobs may even belong to different users. 

• Once a job dependency fails due to the termination 
state of a preceding job, the dependent job will 
never run, even if the preceding job is requeued and 
has a different termination state in a subsequent 
execution. 
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Job Dependency Options 
• after:job_id[:job_id...]

This job can begin execution after the specified jobs have begun execution. 

• afterany:job_id[:job_id...]
This job can begin execution after the specified jobs have terminated (regardless of state.) 

• afternotok:job_id[:job_id...]
This job can begin execution after the specified jobs have terminated in some failed state. 

• afterok:job_id[:job_id...]
This job can begin execution after the specified jobs have successfully executed. 

• aftercorr:job_id
A task of this job array can begin execution after the corresponding task ID in the specified job has
completed successfully. 

• singleton
This job can begin execution after any previously launched jobs sharing the same job name and
user have terminated. 
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Dependency Sequence Example 

NREL | 26 

Submit sequence of batch jobs: 

$ sbatch --ntasks=1 --time=10 pre_process.bash 
Submitted batch job 1010 
$ sbatch --ntasks=128 --time=60 --dependency=afterok:1010 do_work.bash 
Submitted batch job 1011 
$ sbatch --ntasks=1 --time=30 --dependency=afterok:1011 post_process.bash 
Submitted batch job 1012 
… 
$ sbatch --begin=17:00:00 -n1 -t10 --dependency=afterany:1011,1012 night.bash 
Submitted batch job 1013 
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Job Arrays 

• Job arrays are an efficient mechanism of managing a 
collection of batch jobs with identical resource 
requirements 

• Most Slurm commands can manage job arrays either as 
individual elements (tasks) or as a single entity (e.g. delete 
an entire job array in a single command) 

• Job Arrays are only supported using the sbatch command 

NREL | 28 



        

 

  

 

            

               
        

Job Array examples 
• All jobs must have the same initial options (e.g. size, time limit, etc.) 

• It is possible to change some of these options after the job has begun execution 
using the scontrol command specifying the JobID of the array or 
individual ArrayJobID. 

# Submit a job array with index values between 0 and 100 
$ sbatch --array=0-100 -N1 array.sh↲ 

# Submit a job array with index values of 1, 3, 5 and 7 
$ sbatch --array=1,3,5,7 -N1 array.sh 

# Submit a job array with index values between 1 and 7 with a step size 
# of 2 (i.e. 1, 3, 5 and 7) 
$ sbatch --array=1-7:2 -N1 array.sh 

NREL | 29 
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Job Step Best practices 

• Each Slurm job can contain a multitude of job steps and 
the overhead in Slurm for managing job steps is much 
lower than that of individual jobs. 

• Consider putting related work into a single Slurm job with 
multiple job steps both for performance reasons and ease 
of management. 

• Similarly, it is easy to map several single-core jobs to 
individual cores of a single job to conserve NREL hours. 
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Sequential Job Steps 

#!/bin/bash 

#SBATCH --account=<allocation> 

#SBATCH --time=4:00:00 

#SBATCH --job-name=steps 

#SBATCH --nodes=1 

#SBATCH --ntasks-per-node=8 

#SBATCH --output=job_output_filename.%j.out # %j will be replaced 

with the job ID 

# By default, srun uses all job allocation resources (8 tasks each) 
srun --cpu-bind=cores ./myjob.1a 

srun --cpu-bind=cores ./myjob.1b 

srun --cpu-bind=cores ./myjob.1c 
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Parallel Job Steps 

#!/bin/bash 
#SBATCH --account=<allocation> 
#SBATCH --time=4:00:00 
#SBATCH --job-name=steps 
#SBATCH --nodes=8 
#SBATCH --output=job_output_filename.%j.out 

# Be sure to request enough nodes to run all job steps at the same time 
srun -N 2 -n 44 -c 2 --cpu-bind=cores ./myjob.1 & 
srun -N 4 -n 108 -c 2 --cpu-bind=cores ./myjob.2 & 
srun -N 2 -n 40 -c 2 --cpu-bind=cores ./myjob.3 & 
wait 
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Job Information 
• Show queued jobs by user 
$ squeue -u <username> -l ↲ 

• Estimate when your job(s) will start 
$ squeue --start -j <jobID>,<jobID>↲ 

$ scontrol show job <jobID>↲ 

• Show detailed job information 

• Show hostnames of allocated nodes 
$ scontrol show hostname↲ 

• Write submission script to file 
$ scontrol write batch_script <jobID>↲ 

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html 
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Job Information continued

• Use sacct for job accounting information (and exit codes)
• (Use sacct -e for a list of --format options)

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html

$ sacct --starttime 03/01 --format=JobID,Jobname,state,time,elapsed,ncpus,exit
JobID    JobName State  Timelimit Elapsed      NCPUS ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
605590             bash CANCELLED+   04:00:00   00:00:00        250      0:0
605591             bash  COMPLETED   04:01:00   00:00:07       9000      0:0
605591.exte+     extern  COMPLETED              00:00:07       9000      0:0
605591.0           bash  COMPLETED              00:00:04       9000      0:0
605595             bash     FAILED   04:01:00   00:00:09       2160    127:0
605595.exte+     extern  COMPLETED              00:00:09       2160      0:0
605595.0           bash     FAILED              00:00:07       2160    127:0

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html
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Update Job Allocations using scontrol 
The command scontrol can be used to update queued and running jobs 

$ scontrol update jobid=526501 qos=high 
$ sacct -j 526501 --format=jobid,partition,state,qos 

JobID Partition State QOS 

526501 short RUNNING high 
526501.exte+ RUNNING 
526501.0 COMPLETED 

To pause a job: scontrol hold <JOBID> 
To resume a job: scontrol resume <JOBID> 
To cancel and rerun: scontrol requeue <JOBID> 

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html 
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Tracking Allocation Usage

 
  

 

-------------------- ---------- ---------- ----

Tracking Allocation Usage 

alloc_tracker has been deprecated. 
Please use hours_report instead. 

[hpc_user@el1 ~]$ hours_report↲ 
Gathering data from database.....Done 

… 
User hpc_user has access to and used: 
Allocation Handle System Hours Used Note 

handle Peregrine 125 
handle Eagle 320 

NREL | 38 



        

        

          
    

     
    

Advanced Tracking 

hours_report --showall 
• List each project, its PI, and its NREL hour usage. 
hours_report --showall --drillbyuser 
• List each project like above, but also show each member’s 

contributing usage of allotted hours. 
hours_report --help 
• List usage instructions. hours_report is still in 

development and new features will be documented here. 
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Feedback is Appreciated! 

If you have any suggestions to improve this presentation 

we invite you to share with us at HPC-Help@nrel.gov 
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NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency 
and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 
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